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USE OF LINEAR REDUCED-STIFFNESS ANALYTICAL MODELS TO PREDICT SEISMIC
RESPONSE OF DAMAGED CONCRETE STRUCTURES

by

Charles R. Farrar and Christina M. Alvord

ABSTRACT

An extensive analysis of previously measured seismic
response data from the Seismic Category I Structures pro-
gram was made to determine if reduced stiffness linear
models can be used to predict the response of damaged
nuclear power plant structures. Four structures ranging
from one to three stories were analyzed for three different
peak acceleration inputs. All inputs were scaled versions
of the 1940 E1 Centro earthquake measured at the base of
the test structures during shake-table testing. Compari-
sons between measured and analytically predicted responses
were made in terms of floor response spectra. Stiffness
in the analytical models was adjusted to obtain a match in
frequency and damping was adjusted to obtain a match in
amplitude. Results showed that the reduced-stiffness 1in-
ear models could accurately predict the response of the
damaged structures and these results were consistent with
the response observed during static cyclic testing of sim-
ilar structures. Changes in damping with excitation levels
are also discussed. In addition to the analysis of the
seismic response data, the stiffness of these structures
was analyzed by a variety of methods currently used by
industry and the stiffness values were compared with the
values in the analytical models that best fit the measured
response.

I.  INTRODUCTION

The Seismic Category I Structures Program is being carried out at the Los
Alamos National Laboratory under sponsorship of the U.S. Nuclear Regulatory
Commission (NRC), Office of Nuclear Regulatory Research. The program has the
objective of investigating the structural dynamic response of Seismic Category
I reinforced concrete strugﬁgfes (exclusive of containment) that are subjected



to seismic loads beyond their design basis. The program, as originally con-
ceived, is a combined experimental/analytical investigation with heavy emphasis
on the experiment component to establish a good data base. A number of meet-
ings and interactions with the NRC staff have led to the following set of spe-
cific program objectives:

1. Address the seismic response of reinforced concrete Category I structures,
other than containments.

2. Develop experimental data for determining the sensitivity of structural
behavior of Category I structures in the elastic and inelastic response
range to variations in configuration, design practices, and earthquake
loading.

3. Develop experimental data to enable validation of computer programs used
to predict the behavior of Category I structures during earthquake motions
that cause elastic and inelastic responses.

4. Identify floor response spectra changes that occur during earthquake mo-
tions that cause elastic and inelastic structural responses.

5 Develop a method for representing damping in the inelastic range and dem-
onstrate how this damping changes when structural response goes from the
elastic to the inelastic ranges.

6. Assess how shifts in structural frequency affect plant risk.

To meet these objectives, personnel at Los Alamos have tested, statically
and/or dynamically, small-scale isolated shear walls, diesel generator building
models, auxiliary building models and large-scale shear wall elements. A more
detailed summary of the motivation for these tests, scale model theory, model
construction, testing procedures and test results can be found in Refs. 1-8.

This document reports the analytical work carried out in FY 87 as part of
an effort to address program objectives 4 and 5. Specifically, at the Technical
Review Group* (TRG) meeting on December 19, 1986, the TRG requested that the
investigators at Los Alamos attempt to match floor response spectra

* The Technical Review Group is a group of nationally recognized seismic and
concrete experts on nuclear power plant structures and was established to both

review the progress and make recommendations regarding the technical direction
of this program.

-,



calculated from acceleration-time histories measured on different structures
previously tested as part of the program (herein referred to as measured re-
sponse spectra) with floor response spectra determined from the response of
analytical models of the same structures (herein referred to as calculated
response spectra). The calculated response spectra were to be generated from
the response of linear analytical models of the test structures subjected to
actual measured base inputs. Matching was to be accomplished by adjusting the
stiffness and damping in the analytical model. The motivation of this inves-
tigation was based on TRG's feeling that more emphasis should be placed on the
analysis of data already obtained in the program. In particular, the TRG felt
that it was pertinent to determine if the Seismic Category I structures can
continue to be analyzed with corrected linear models despite the reductions in
stiffness associated with the seismic loading. Also, comparisons between meas-
ured and analytical response spectra quantify the differences between the pre-
dicted response of these structures based on current design practices and the
experimentally observed response as this information would actually be used by
the engineer in plant and equipment design.

The TRG also requested that engineers at Los Alamos use various design
assumptions to recompute the analytical values of stiffners for several, dif-
ferent test structure geometries. These alternate values of stiffness were
then to be compared with the indirectly measured stiffness values as inferred
from resonant frequency measurements.

II. RESPONSE SPECTRA CALCULATIONS

Attempts to predict the measured response spectra with calculated response
spectra were performed on four structures. These structures included a small-
scale shear wall element (Ref. 6), a large-scale shear wall element (Ref. 7),
a two-story, 1/10-scale diesel generator building model (Ref. 3), and a three-
story, 1/42-scale auxiliary building model (Ref. 5). The structures that were
analyzed are shown in Figs. 1-4, respectively, and their material properties
are summarized in Table I. For each structure, three different peak accelera-
tion Tevel base excitations were analyzed. These excitations were scaled ver-
sions of the 1940 E1 Centro earthquake. HWith the different levels of excita-
tion, insight can be gained into the change in structural properties (damping
and stiffness) as a function of the seismic input amplitude. By analyzing



TABLE I
TEST STRUCTURES MATERIAL PROPERTIES

Ultimate
Compressive  Modulus of 57,000 Vf
Structure Strength Elasticity Reinforcement
(Ksi) (psi) (psi) %, each direction

Small-scale

shear wall

element, TRG-1 3.77 3.2 x 106 3.5 x 106 0.56
Large-scale

shear wall

element, TRG-3 3.81 2.0 x 106 3.5 x 106 0.61

1/30-scale diesel
generator building,

CERL-1 3.18 2.8 x 106 3.2 x 106 0.56
1/42-scale

auxiliary building,

SANDIA-1 2.90 2.7 x 106 3.1 x 106 0.56

responses to different excitation amplitudes one can also determine if the
test structures are behaving in a linear manner.

The numerical models that were used to determine the analytical response
spectra were discrete lTumped mass models typical of those used by the nuclear
civil engineering community (Ref. 9). Only translational degrees of freedom
were associated with each floor level. A fourth-order Runge-Kutta computation
procedure was used to integrate the equations of motion developed from the
numerical model. Initial estimates of stiffness were determined indirectly
from the measured first-mode resonant frequency assuming the following rela-
tionship:



where f = the measured first mode resonant frequency.
fT = the theoretical first mode resonant frequency.

KT = theoretical stiffness (based on uncracked cross-section,
strength-of-materials analysis).
K. = initial estimate of the stiffness to be used in the numerical

lumped mass models.

Figure 5 shows the ratio of the initial stiffness estimate to the theoretical
stiffness for the test structures that were analyzed. Damping was initially
estimated at 7% of critical, based on damping ratios identified from frequency
response functions measured during previous testing in the program. In this
report all damping values refer to viscous damping, percent of critical. The
empirical methods used to Tump mass at a particular floor level are discussed
in the summary of the response spectra analyses for the individual test struc-
tures.

To find the structural properties for an analytical model whose response
would simulate the measured floor response spectra, an iterative process was
pursued during which stiffness was adjusted to match the frequency of the meas-
ured peak response and damping was adjusted to match the amplitude of the meas-
ured peak response. Visual inspection of the response spectra was used to
determine if the analytical model predicted the measured response. A sum-of-
the-errors squared analysis could have been used to quantify the match between
measured and analytical response spectra. However, it was felt that a stray
high-frequency spike in the measured floor response spectra could lead to a
poor numerical value for the fit even though the strong-motion portion of the
response was well predicted. The following steps outline the iterative pro-
cedure used to match the measured and analytical floor response spectra.

1. Digitize all necessary analog accelerometer signals, apply the appropri-
ate calibration factors, filter 60-Hz noise and baseline correct for dc
offset.

2. Calculate the measured floor response spectra using the digitized signals
from step 1 and using 2% equipment damping.

3. Develop a lumped-mass analytical model of the test structure and subject
it to the measured base input (digitized in step 1).



4. Calculate floor response spectra based on the response of the analytical
model as determined in step 3. Use 2% equipment damping.

5. Repeat steps 3 and 4 adjusting stiffness in the model to match measured
response spectra peaks in terms of frequency (often requiring several
iterations).

6. Repeat steps 3 and 4 adjusting damping in the model to match the ampli-
tude of the peaks in the measured response spectra (often requiring sev-
eral iterations).

7. Repeat steps 2-6 for 10% equipment damping.

III. RESULTS OF RESPONSE SPECTRA MATCHING

A summary of the response spectra analyses for each test structure fol-
Tows. No scaling of the results was made. If an individual would like to
scale the results to a prototype structure, Ref. 4 and the report discussing
the particular test structure should be consulted. In the discussion that
follows, the theoretical stiffness refers to the uncracked cross-section,
strength-of-materials stiffness using a measured modulus of elasticity and
assuming the entire end walls were effective in resisting bending deformations.
Included on all plots comparing the measured response spectra (labeled meas-
ured) and the best estimate analytical response spectra (labeled analytical
with reduced stiffness) is a plot of analytical response spectra using the
theoretical stiffness (labeled analytical, a current design practice). All
the response spectra have been displayed in terms of absolute accelerations
and 2% damping was used to calculate the base input response spectra.

A. Response Spectra Analysis of TRG-1

The structure shown in Fig. 1 is referred to as TRG-1. This structure
was analyzed for response to 0.211-g's, 2.54-g's, and 7.23-g's peak accelera-
tion simulated seismic inputs. The response spectra for these base excitations
are shown in Figs. 6-8. Figure 5 shows the measured stiffness in TRG-1 to be
38% of the theoretical value. This stiffness reduction was applied to the
theoretical stiffness in a one degree-of-freedom, lumped-mass, analytical model
that had 7% damping. The lumped mass was taken as the added mass, the mass of
the top slab plus the mass of one siab thickness of the walls. Figures 9 and
10 show the comparison between the measured response spectra and the calculated




response spectra for the 0.211-g's input. As is evident from these figures,
the strong motion portion of the measured response was predicted by the ana-
Tytical model.

During the subsequent analyses of the response to the two higher-level
inputs, the stiffness in the analytical model had to be reduced and the damping
in these models had to be increased in order to accurately predict the measured
response. The response spectra corresponding to the 2.54-g's input are shown
in Figs. 11 and 12 and the response spectra for the 7.23-g's input are shown
in Figs. 13 and 14. Changes in the structural properties that were necessary
to obtain agreement with the measured response spectra are indicative of the
damage that the structure experienced during the testing sequence. These prop-
erties are summarized in Table II.

TABLE II
STRUCTURAL PROPERTIES USED IN THE BEST-FIT ANALYTICAL MODEL OF TRG-1

Excitation Lumped Mass Stiffness Damping*
Level ~ (1b-s2/in.) (1b/in. x 10-6) (% of critical)
0.211 g's 1.65 0.44 7
7
2.54 g's 1.65 0.3 22
22
7.23 g's 1.65 0.15 16
13

*For a particular input level, the first damping value corfesponds to the best
fit for 2% equipment damping FRS and the second damping value corresponds to
the best fit for 10% equipment damping FRS.

B. Response Spectra Analysis of TRG-3
The structure shown in Fig. 2 is referred to as TRG-3. This structure
was analyzed for response to 0.88-g's, 0.99-g's, and 1.65-g's peak acceleration

simulated seismic inputs. The response spectra for these base excitations are
shown in Figs. 15-17.

As revealed by Fig. 5, the measured stiffness appeared to be 25% of the
theoretical stiffness. Initially, this stiffness reduction was applied to the



theoretical stiffness in a one degree-of-freedom lumped-mass analytical model
that had 7% damping. A stiffness value that was 17% of the theoretical stiff-
ness was found to provide the best match to the measured response. The dif-
ference between this stiffness value and the one determined from the measured
resonant frequency is attributed to the nonlinear response of the structure.
The reduction in stiffness to 25% of the theoretical stiffness was determined
from the response to a low-level (less than 0.5-g's peak acceleration) haver-
sine pulse after the structure had been damaged seismically. When excited by
the 0.88-g's seismic input, the change in frequency content and amplitude of
the excitation produced a different response in the damaged structure. The
Tumped mass for the analytical model of this structure was determined in a
similar fashion as the Tumped mass for TRG-1. A damping value of 8.5% was
needed to match the measured response spectra when they were calculated with
2% equipment damping. When 10% equipment damping was used, the analytical
model required only 5.5% damping to obtain an accurate match. The same analy-
tical model was used with all three seismic inputs and found to work equally
well at all levels. This implies that the structure was responding in a
reduced-stiffness, linear manner and that the subsequent seismic excitations
did not introduce further damage. The comparisons of response spectras for
the 0.88-g's input are shown in Figs. 18 and 19. For the 0.99-g's input, the
comparisons are shown in Figs. 20 and 21, and for the 1.65-g's input, the com-
parisons are shown in Figs. 22 and 23. TRG-3 was the only structure made with
conventional concrete and rebar that was studied in this exercise.

C. Response Spectra Analysis of the 1/10-Scale Diesel Generator Building Model

The structure shown in Fig. 3 is a 1/10-scale model of an idealized diesel
generator building and is referred to as CERL-1. This structure was analyzed
for response to 1.88-g's, 3.53-g's, and 13.66-g's peak acceleration simulated
seismic inputs. The 13.6-g's input was the final seismic test this structure
experienced before failure. Response spectra for these base excitations are
shown in Figs. 24-26. Figure 27 shows the lumped-mass model used to calculate
the analytical responses of the CERL-1 structure.

During a particular seismic excitation, the same stiffness values were
used for each floor. Again, the lTumped masses were taken as the added mass
plus the floor slab mass plus the mass of one slab thickness of the walls above
and below the floor.




Initially, for the 1.88-g's input, the stiffness was reduced to 17% of
the theoretical stiffness to match the measured response. Damping values of
6% for each floor provided the best match to the measured response. Compari-
sons of the measured and analytically predicted FRS are shown in Figs. 28-31
for the 1.88-g's excitation. As the peak input acceleration was increased,
the stiffness values were decreased and the damping values were increased to
obtain a match with the measured spectra. For both the 3.53-g's and the
13.6-g's excitations, damping in the bottom floor of the analytical model had
to be made greater than the damping associated with the top floor to obtain a
match to the measured data. Comparisons of the measured and analytically pre-
dicted FRS are shown in Figs. 32-35 for the 3.53-g's input and similar compar-
isons are shown in Figs. 36-39 for the 13.66-g's input. The structural prop-
erties that provided the best estimate to the measured response are summarized
in Table III.

TABLE III
STRUCTURAL PROPERTIES USED IN THE BEST-FIT ANALYTICAL MODEL OF CERL-1
(Fig. 27)
Excitation Lumped Mass Stiffness Damping
Level (1b-s2/in.) (1b/in. x 10-6) (% of critical)
1.88 g's my = 4.69 Ky = 1.4 Ty =6
mo = 4.61 Ko = 1.4 o =6
3.53 g's mp = 4.69 Ki = 1.4 g1 = 15
my = 4.6 Ko = 1.4 Lo = 11
13.6 g's my = 4.69 Ky = 0.65 1 = 35
my = 4.61 Ko = 0.65 Ly = 10

D. Response Spectra Analysis of the 1/42-Scale Auxiliary Building Model

The structure shown in Fig. 4 is a 1/42-scale model of an idealized aux-
iliary building and is referred to as SANDIA-1. This structure was analyzed
for response to 0.65-g's, 1.27-g's, and 2.83-g's peak acceleration simulated
seismic inputs. Response spectra for these base excitations are shown in
Figs. 40-42. Figure 43 shows the Tumped mass model used to calculate the
analytical responses of the SANDIA-T1 structure.



For all three levels of excitation, a reduction to 25% of the theoretical
stiffness in the analytical model was found to give the best correspondence
between the measured and the computed response. Similar trends were seen with
the damping as had been noted with the CERL-1 structure. That is, to obtain a
good match, damping was increased in the lower stories with the value used in
the bottom story playing the most significant role in the overall structural
response. Comparisons of the measured and analytically predicted FRS are shown
in Figs. 44-49 for the 0.65-g's excitation.

For the 1.27-g's input, three sets of damping values were used to obtain
"best estimates" of the measured response. The first set, C] = 9%, cz = 4%,
and C3 = 2%, matched the top floor response best but significantly over-
estimated the bottom floor response. Because the top floor sees the largest
response, this estimate may be said to be the best. The second set, gy = 11%,
CZ = 6%, and §3 = 2%, matched the bottom floor response but significantly
underestimated the top floor response. Finally, the third set C] = 8%, cz = 7%,
and C3 = 6%, provided the best overall estimate but still slightly overestimated
the bottom floor response and slightly underestimated the top floor response
while giving a very accurate estimate of the second floor response. Comparisons
of these measured and analytically predicted FRS are shown in Figs. 50-55 and
similar plots for the 1.27-g's input but with stiffnesses determined by dif-
ferent design assumptions are shown in Figs. 56-61. Figures 62-67 show the re-
sponse spectra matching for the 2.83-g's input. The structural properties that
provided the best estimate to the measured response are summarized in Table IV.

IV. ALTERNATE STIFFNESS CALCULATIONS

In addition to calculating linear "best estimate" response spectra that
match the measured response spectra, several design assumptions have been used
to calculate alternate values of the shear wall stiffness. Among the assump-
tions are the following: the end walls are fully effective in resisting bending
deformations, the end wall provides no resistance, ACI 349-85 T-beam criteria
are used for assessing the end wall's effectiveness, and the ASCE 4-86 method
is used for assessing the end wall's effectiveness. These stiffness values
have been calculated with both the measured modulus of elasticity and with a
modulus calculated from the ACI 349-85 empirical formula. In Table V, the
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TABLE IV
STRUCTURAL PROPERTIES USED IN THE BEST-FIT ANALYTICAL MODEL OF SANDIA-1
(Fig. 43)
Excitation Lumped Mass Stiffness Damping
Level (1b-s2/in.) (1b/in. x 10-6) (% _of critical)
0.65 g's my = 1.48 Ky = 1.37 1 =12
my = 1.37 Ko = 1.37 o = 7
m3 =1.18 K3 = 1.37 3 = 4
1.27 g's m = 1.48 Ky = 1.37 L1 = 8
mp = 1.37 Ko = 1.37 T2 = 7
m3 =1.18 K3 = 1.37 t3= 6
2.83g's m = 1.48 Ky = 1.37 g1 =15
m2=].37 K2=].37 C2=]4
m3 = 1.18 K3 = 1.37 3 =13

stiffness values are compared to the ones that provided the best match between
the analytical and measured response spectra at the lowest simulated seismic
input level. 1In all cases, the reinforcing steel has been neglected in the
computation of the cross-sectional moment of inertia and effective shear area.*
For the CERL-1 and SANDIA-1 structures, the stiffness values are for an indi-
vidual story assuming cantilever deformation. Parameters for these calcula-
tions are summarized in Table V. A1l calculations assume Poisson’s ratio (v)
equals 0.2. The structures' geometries are shown in Figs. 1-4 and 68. Figure
68 shows a structure (TRG-4) that was tested statically.

A. Stiffness Parameters for TRG-1

1., 1.1
Kt Kew  Keg  Ks
2E 1 . . .
K o Bending stiffness associated

BM * n2 °  with applied moment

* TRG-3 had the largest percentage of reinforcement and smallest concrete

modulus. Including the reinforcement in the stiffness calculation increased
the stiffness value by 12%.

11
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TABLE V
ANALYTICAL STIFFNESS VALUES COMPARED WITH MEASURED STIFFNESS VALUES

Stiffness Stiffness

Determined Determined End Walls ACI Neglect

from Seismic from Response Fully ASCE T-Beam End

Response © Spectra Matching Effective Criteria Criteria Walls

1b/in. x 10-6 1b/in. x 10-6 1b/in. x 10-6
TRG-1 (1 story)a 0.41 0.44 1.07 0.93 0.61 0.44
TRG-1 (1 story)b 0.41 0.44 1.17 1.02 0.66 0.48
TRG-3 (1 stor‘y)a 0.67 0.45 2.67 2.33 1.54 1.11
TRG-3 (1 Story)b 0.67 0.45 4.67 4.07 2.70 1.94
CERL-1 (2 story)a’d 1.31 1.4 8.21 6.88 2.00 1.94
CERL-1 (2 story)P:d 1.31 1.4 9.38 7.86 2.29 2.22
Sandia (3 story)®:d 1.39 1.37 5.45 5.11 4.82 4.68
Sandia (3 story)b’d 1.39 1.37 6.26 5.86 5.53 5.37
TRG-4 (1 story)? 6.49¢ — 6.27 5.39 3.88 2.51
TRG-4 (1 story)® 6.49° — 7.14 6.15 4.42 2.86

Theoretical values calculated using measured modulus of elasticity

Theoretical values calculated using EC = 57,000 W/?i:

These stiffness values were determined from static load cycle testing using external displacement gages
These stiffness values are for an individual story assuming cantilever deformation

These stiffness values were determined from

o Q 0O T

£ 2

K = meas.

f KTheory :

Theory




K (o Bending stiffness associated

CB ~ (3 ' with applied load

KS = %g , Shear stiffness

A = 22.5i9n. x 1 in. = 22.5 in.2
3.2 x 106 psi (measured)
EC = 6
3.5 x 107 psi (ACI)
Ec 1.33 x 106 (measured)
G =30+ = }1.46 x 105 (acD)
L = 22.5 in. (See free-body diagram, Fig. 69)
h = 3.125 in. (See free-body diagram, Fig. 69)
=530 (22.5% - 2 145 20.5)3 - 7700 in?

12 12

1 3 1 3| 4
IaCI T-beam = 13 4¢22.5)% - 2 []2 1.5 (20.5) J.. 1600 in.” |

ACI 349-85, 8.10.4
(Fig. 70)

3

1 ) :
17 1€22.5)7 = 950 i

I neglect end ~
walls

1

3
IaSCE 4-86 = 13 16 (22.5)° - 2 [

(Fig. 71)

B. Stiffness Parameters for TRG-3

n.4

1.
12

S N B
K~ Kgw  Keg K

2E 1

7.5 (20.5)3} ~ 4400 in.%

13




kT
3

A = 90 x 4 = 360 in.2

E - 2.0 x 106 psi (measured)
¢ 3.5 x 10% psi (acD) ’

5 s
) E ) 8.33 x 106 psi (measured)
201 +v) " J1.46 x 107 psi (ACD) ?

L = 90 in. (See free-body diagram, Fig. 69)

h =12.5 in. (See free-body diagram, Fig. 69)
I - %5 120¢90)3 - 2[{5 58(82)3] - 1,960,000 in.%,

1 3 1 3 . 4
TpCT T-bean = 15 16(90)° - 2[12 6(82) ]= 421,000 in.% |

ACI 349-85, 8.10.4

1
Ineg]ect end T 12
walls

4¢90)3 = 243,000 in.*

1 1

1 3 1 3 .4
Inscg 4.gs = 13 64 (90)° - 2 []2 30 (82) ] = 1,130,000 in.

C. Stiffness Parameters for CERL-1

I N
Kr ~ Keg K
%

Keg 3

1 AG

K =L °

S

14




2(3 x 30) = 180 in?

>
]

E o= 12.8 X 106 psi (measured)

¢ 13.2 x 10° psi cacI) '
EC 1.17 x 106 psi (measured)

G =20 = 6 .

1.38 x 10" psi (ACI)
L = 21.75 in.
1 - L 5403003 - 2|1 48243 = 66,000 in.% |

12 12
1 3 1 3] .4
IACI T-beam = 2[]2 4.8(30) ] - 2[]2 1.8 (24) ] = 17,000 in.
ACI 349-85, 8.10.3
(Fig. 72)
1 3| . 4

Ineg]ect = 2 []2 3(30) ] = 14,000 in.
end walls

1 3 1 3 . 4
IASCE 4-86 = 2 []2 10.25 (30) J - 2 []2 7.25 (24) } = 29,000 in.
(Fig. 73)

D. Stiffness Parameters for the Sandia Structure

L __1 + 1

Kt Keg K

1 ) 3E I

Keg 13

1 _ AG

KS L

A =201 x 26] = 52 in®

E - 2.7 x 106 psi (measured)

3.1 x 108 psi (AcD)



C - Eg . | 1.12 x 106 psi (measured)
2(1+v) 1.29 x 108 psi (acD

L =10 in.,
I - }5 26(26)° - 2[{5 24(24)3]= in.? = 10,500 in.%
1 31 [ 3] 4
TACI T-beam - 2[12 1.83(26) ]- 2[12 0.83(24) ]_ 3450 in.% |
ACI 349-85, 8.10.3
1 3| .4
Lneglect ~ 2[12 1(26) ] - 2930 in.% |
end walls
L 3 1 3| _ .4

Lpock 4.5 = 2 [12 4.33 (26) ] _ 2 []2 3.33 (24) } - 5010 in.

E. Stiffness Parameters for TRG-4

11,1, L
Kr ~ Kgy  Keg K
L

BM 2

. 3€,1

8~ 3

AG
Ks =1

A =90 x 6 =540 in.2

3.23 x 106 psi (measured)
3.68 x 10° psi (ACD)

16




G _;Eg__ ’1.35 X 106 psi (measured)

S 206w 1 53 ¢ 108 psi (ACD)
h =20 in.,
L = 90 in.,
I - %5 120¢90)3 - 2[}5 57(78)3] - 2,782,000 in.} |

1 3 L[ 3| 4
Lpcl Tobeam = T3 24(90)° - 2[]2 9(78) ] = 746,000 in.”

ACI 349-85, 8.10.4

1 3 . 4
Ineg]ect =13 6(90)~ = 364,000 in.
end walls
| 3 1 3] .4
Iasce 4-86 = 12 66 (907 - 2 [ 12 30 (78) ] - 1,637,000 in.

IV. CONCLUSIONS

The following conclusions were made based on the results of the floor
response spectra matching for the various structures.

1. Linear response spectra techniques applied to the analytical responses
generated with lumped-mass models of the structures did an excellent job
of predicting the floor response spectra generated from experimentally
measured response data. These predictions required modifications in the
stiffness and damping from currently used design and analysis practice.
The Tinear response spectra techniques continued to work well even after
the structures were known to have sustained significant damage in pre-
vious simulated seismic tests as is evident in the calculations with
CERL-1 during the 13.6-g's input.

2. The stiffness values that provide the best match are significantly Tower
than current design criteria would predict even if end walls were ne-
glected.




3. At higher input levels, stiffness must be further reduced to obtain an
accurate match.

4. 1In order to obtain an accurate match, damping values must be in the
6%-10% range at the low-level excitations and must be increased to as
high as 35% when the damaged structure receives severe seismic loading
after sustaining previous seismic damage.

5. Damping has a greater effect on peaks in the response spectra caused by
resonance than it does on peaks caused by a surge in the energy content
of the input signal.

6. For a multidegree-of-freedom (MDOF) system, a good match with the meas-
ured response spectra was obtained by progressively increasing the damp-
ing in the lower stories.

7. For MDOF systems, the damping in the bottom floor plays a major role in
controlling the system response. The structures seem relatively insensi-
tive to the damping values associated with the upper floors.

8. For MDOF systems, it is not clear that there is a unique set of damping
values that provide the best match to the measured response spectra as is
evident in the three "best estimates" of the Sandia structures response
to the 1.27-g's seismic input. In general, the analytical model that
gives the best overall match tends to overestimate the bottom floor re-
sponse and underestimate the top floor response.

The fact that the reduced-stiffness linear models accurately predict the
response of the damaged concrete structures is consistent with the response
observed during static cyclic testing of large shear wall elements as discussed
in Ref. 8. During these tests it was observed that, after a structure cracked,
the subsequent cycles of response were linear with a reduced stiffness. This
response was repeatable until load levels were obtained that introduced more
cracking and further reduced the stiffness of the structure. After the addi-
tional cracking was introduced, the structures again responded in a linear
manner but with an even further reduction in stiffness. Therefore, if a dam-
aged structure was subjected to seismic inputs that would not introduce further
damage, it would be expected that a reduced-stiffness linear model would ac-
curately predict the structure's dynamic response. The 1940 El1 Centro earth-
quake, which was simulated in all tests analyzed, has its peak amplitude
response at the beginning of the signal. If damage is caused by this portion
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of the signal, most of the response will once again be in a reduced-stiffness
Tinear manner. It is felt that, in this situation, the modified linear models
will once more predict the response of the structure because of the nature of
the input signal; most likely, they would not do the same for arbitrary inputs.
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TRG-1

Fig. 1.

ALL 1-in. WALLS HAVE
0.042-in. DIAMETER WIRE ON
0.25-in. CENTERS EACH DIRECTION

ONE STEEL PLATE
APPROX 575 Ib

X 0.25
U
0.25
B
< .25
i .
05N

DIMENSIONS IN INCHES
1in.=25.4 mm, 11b = 445 N

The TRG-1 structure.



ALL 4-in. WALLS HAVE No. 3 REBAR
ON 4.5-in. CENTERS EACH FACE,
EACH DIRECTION

DIMENSIONS
IN INCHES
90
STEEL PLATES GROUTED

AND HELD IN PLACE BY

EIGHTEEN 1 1/4-in. BOLTS

(36 TOTAL) TORQUED TO 400 ft. Ib /

Fig. 2.

TRG-3

TWO STEEL PLATES
APPROX 18,800 Ib EACH

GROUTED
N\, 45
C
4.5
B
i 4.5
@ \)
1.5
1.5
@
SHEAR
WALL
s 0
NP
JACK SCREWS 45
6in.x6in.x24in. NI
AT 4 LOCATIONS
DIRECTION

OF INPUT ACCELERATION

The TRG-3 structure.

4 PLACES 1in.x 18in. x 18 in.
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3D-10-2 1130 | 228 231
3D-10-2 1130 | 228 231
3D-12-2 130 | 236 166
CERL 1 110 | 1285 | 1330
CERL 2 110 | 1285 | 906

Fig. 3. The CERL-1 structure.
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Fig. 4. The SANDIA-1 structure.
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Fig. 27. Lumped-mass model of the
CERL-1 structure.
8.0 L T ]llllll T T Illl”‘ ] T (V1T0TT
@ g0k
:g 7.0 -
w
o 60 .
pd
o) ANALYTICAL,
o 50 WITH REDUCED _|
w STIFFNESS
UJ L)
g; 40 ":24///// i
Q MEASURED _§ V |
: 3.0+ ‘. ‘,‘ -
c ] ‘\\
o0t DN NP
Eg A\u, AT
O 10} ANALYTICAL, A _
< CURRENT DESIGN
PRACTICE
0.0 RNl s e tannd N
10° 10° 102 10%
FREQUENCY (Hz)
Fig. 29. Comparison of measured and

32

analytical response spectra
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1.88-g's input and 10%
damping.
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analytical response spectra
for CERL-1, Floor 1, at
13.66-g9's input, and 10%
damping.
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analytical response spectra
for SANDIA-1, Floor 1, at
0.65-g's input and 10%
damping.
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